

DEVELOPMENT AND APPLICATION OF HIGH TEMPERATURE SENSORS AND ELECTONICS

Gary W. Hunter, Ph.D.
NASA Glenn Research Center
Cleveland, OH 44135
ghunter@grc.nasa.gov

N'A SA Eleni Rusearch Center

CONTRIBUTORS

NASA GLENN RESEARCH CENTER Jih-Fen Lei, G. Fralick, L. Martin, G. Behiem, R. Okojie, Phil G. Neudeck

- L.Y. Chen, Ohio Aerospace Institute
- D. Lukco, Dynacs Corp.
- D. J. Spry, D. Androjna, and C. Blaha, Akima Corp/NASA GRC
- C. C. Liu, B. Ward, and Q. H. Wu, Case Western Reserve University
- P. Dutta, M. Frank, M. Frank, J. Trimbol, M. Fulkerson, Ohio State University
- D. Makel, Makel Engineering Inc.

OUTLINE

- INTRODUCTION
- PHYSICAL SENSOR TECHNOLOGY
 THIN FILM SENSORS
 LEAD WIRES
- SIC HIGH TEMPERATURE ELECTRONICS/SENSORS PRESSURE SENSOR
- CHEMICAL SENSOR TECHNOLOGY
 TIN-OXIDE BASED GAS SENSORS
 HIGH TEMPERATURE ELECTRONIC NOSE
- SUMMARY/COMMON THEMES

SENSORS & ELECTRONICS TECHNOLOGY BRANCH SCOPE OF WORK

STRAIN GAGES

CHEMICAL SENSORS

SILICON CARBIDE HIGH TEMPERATURE ELECTRONICS

HEAT FLUX GAGES

MICROELECTROMECHANICAL SYSTEMS (MEMS)

TEMPERATURE SENSORS

THIN FILM SENSOR TECHNOLOGY

- •VERY THIN, MINIMALLY INTRUSIVE SENSORS ABLE TO PROVIDE HIGH TEMPERATURE DATA WITHOUT DISTURBING AIR FLOW
- •CAN BE FABRICATED DIRECTLY ON CERAMIC AND METAL ENGINE PARTS WITHOUT THE NEED TO CUT INTO THE PART.
- •CAN BE APPLIED TO METAL BASED MATERIALS, CERAMIC MATERIALS, AND CERAMIC MATRIX COMPOSITES.
- •MULTIFUNTIONAL, INFORMATION RICH SENSORS CURRENTLY UNDER DEVELOPMENT

PdCr THIN FILM GAUGE APPLIED ON ALLIED-SIGNAL ENGINES CERAMIC TURBINE BLADE

THIN FILM THERMOCOUPLES ON CERMIC MATRIX COMPOSITE HOOP

THIN FILM
THERMOCOUPLES ON
SPACE SHUTTLE MAIN
ENGINE TURBINE BLADES

HEAT FLUX GAGE ON SILICON NITRIDE PLUG

HIGH TEMPERATURE STRAIN SENSOR TECHNOLOGY

1991 R&D 100 Award

PdCr wire strain gauge applied on Ford Motor Co. exhaust manifold

1995 R&D 100 Award

PdCr thin film gauge applied on Allied-Signal Engines ceramic turbine blade

- High temperature strain sensors developed based on a newly developed alloy, PdCr.
- Wire gauge operates to 800 °C and thin film gauge operates to 1100 °C, compared to 400°C of the commercially available technologies.
- Technology transferred to Pratt & Whitney, GEAE, AlliedSignal Engine, Allison, Ford Motor et al. for advanced materials and engine testing.
- Wire strain gauge technology commercialized.
- New ceramic gauge materials being explored for higher temperature applications.

LEAD WIRE CONNECTIONS SIGNIFICANT PROBLEM

"CONVOLUTED" APPROACH

STANDARD APPROACH

Sensor configuration

Long-lived Convoluted Thermocouples
For Ceramics Temperature Measurements
1998 R&D 100 Award

Applied to a GEAE IHPTET SiC/SiC combustor liner

Unique convoluted design and installation technique successfully provided the needed thermal stress relief

Good adhesion on ceramic based materials such as ceramic matrix composite

Operating in a hostile environment (1300 C 4560 torrs) for a long period of time (>20 hrs)

A better, faster, cheaper enabling technology

Commercialized by HiTec Products Inc.

Applied to a C/SiC cylinder

SIC-BASED MICROSYSTEMS

•SiC-based electronics and sensors can operate in hostile environments (600 C = 1112 F GLOWING RED HOT!) where conventional silicon-based electronics (limited to 350 C) cannot function.

SIC-BASED MICROSYSTEM BENEFITS

- •Operation in High Temperatures, High Power, High Radiation, and Harsh Environments
- •Reduced Size, Weight, and Power Consumption- Electronics in Harsh Environments
- Use Si Based Processing Techniques

INTEGRATED SYSTEMS FOR USE IN HARSH ENVIRONMENTS

ELECTRONICS

SENSORS

SIC-BASED PRESSURE SENSORS

• SIC HAS EXCELLENT MECHANICAL PROPERTIES FOR USE AS A HARSH ENVIRONMENT PRESSURE SENSOR (T > 500 °C, SILICON UNDERGOES PLASTIC DEFORMATION)

STRONG MATERIAL

LARGE PIEZORESISTIVE COEFFICIENTS

- FORM DIAPHRAM OF SIC AND INTEGRATE WITH ELECTRONICS
- WIDE RANGE OF APPLICATIONS

AERONAUTIC ENGINE APPLICATIONS
AUTOMOTIVE APPLICATIONS
WIND TUNNELS
MATERIAL PROCESSING

• TWO APPROACHES
SIC DIAPHRAM ON SI
SIC DIAPHRAM ON SIC

SiC Pressure Sensor with Electronics

HIGH TEMPERATURE SIC PRESSURE SENSORS: KEY TECHNOLOGIES

Key technologies:

- SiC micromachining
- High temperature contacts
- High temperature packaging

SiC pressure sensor, magnified

Diagram of SiC pressure sensor

metal contacts Ti / TaSi₂ / Pt

strain gages n-type SiC

isolation layer p-type SiC

substrate n-type SiC

TECHNOLOGY DEVELOPMENT: SIC MICROMACHINING

SiC is chemically inert and therefore difficult to micromachine

Micromachining methods for SiC:

- Electrochemical etching
 - developed by Kulite, early 1990's
 - 10KV 100x <u>100</u>Pm 0039

Backside of SiC diaphragm fabricated by electrochemical etching 60 µm etch depth; 1 mm diam

- Deep reactive ion etching (DRIE)
 - developed by GRC, 1999

Backside of SiC diaphragm fabricated by DRIE 50 µm etch depth; 1 mm diam

TECHNOLOGY DEVELOPMENT: SIC MICROMACHINING

Advantages of DRIE micromachining process for SiC:

- Provides vertical sidewalls, smooth etched surfaces
- Uses a durable and readily applied etch mask (nickel or indium-tin-oxide)
- High rate (0.3 μm/min); uses automated equipment

DRIE system in GRC cleanroom

Hole etched by DRIE through a 100 μm thick SiC wafer

The DRIE process for SiC is an enabling technology for harsh environment MEMS

TECHNOLOGY DEVELOPMENT: HIGH TEMPERATURE CONTACTS

A three layer contact structure, titanium/tantalum silicide/platinum, has shown minimal degradation in performance after more than 1000 hrs at 600 °C

Contact resistance as a function of time exposed to 600 °C. Recently, 1000 hrs at 600 °C has been demonstrated.

Auger depth profile of contact exposed to 600 °C for 100 hrs. Following burn-in, a platinum silicide diffusion barrier is formed, which protects the underlying layers from oxidation.

TECHNOLOGY DEVELOPMENT: HIGH TEMPERATURE SIC PRESSURE SENSOR PACKAGING

Cross section of SiC pressure sensor package

High Temperature SiC Pressure Sensor: Engine Test

Above: 500 °C SiC pressure sensor

SiC Pressure Sensor Engine Test

Above: data from the engine test is superimposed on calibration data for the sensor. A 4 mV output shift is produced upon exposure to the peak temperature. Further work will aim to decrease sensor drift.

Left: SiC pressure sensor installed in compressor deswirl region of Honeywell AS907 core engine.

MICROFABRICATED TIN OXIDE BASED NOx AND CO SENSOR TECHNOLOGY

- MICROFABRICATED FOR MINIMAL SIZE, WEIGHT AND POWER CONSUMPTION
- MICROMACHINED TO MINIMIZE POWER CONSUMPTION AND IMPROVE RESPONSE TIME
- TEMPERATURE DETECTOR AND HEATER INCORPORATED INTO SENSOR STRUCTURE
- NANOFABRICATION OF TIN-OXIDE TO INCREASE SENSOR STABILITY

STRUCTURE OF A MICROFABRICATED TIN-OXIDE SENSOR

ALTERNATE PROCESSING YIELDS IMPROVED SENSOR PROPERTIES

PROPERTIES OF NANOCRYSTALLINE SNO2 THIN FILM FROM SOL-GEL PROCESS

- SMALL PARTICLE SIZE
- HIGH POROSITY
- LARGE SURFACE AREA
- HOMOGENEOUS CHEMICAL AND PHYSICAL STRUCTURE

ADVANTAGES FOR SENSOR APPLICATIONS

- HIGH SENSITIVITY
- FAST RESPONSE
- STABLE OPERATION

Nanocrystalline SnO₂ after annealing at 600 °C for 30 minutes.

THE RESPONSE OF A DOPED SNO₂ SENSOR TO CYCLED CONCENTRATIONS OF NO_X

STEPS: 0 TO 3 TO 6 TO 12 TO 25 TO 50 PPM AND BACK TO 0 IN AIR

PACKAGING TAILORED FOR THE APPLICATION

SnO2 SENSORS ON CERAMIC SUBSTRATE RATHER THAN SILICON FOR ENGINE TESTING

Demonstration Testing Of NOx Sensor In Gas Turbine Exhaust Stream

Industry Standard Continuous Emission Monitoring Equipment

Makel Engineering, Inc.

Species	CEM	MSES
	Measurement	Measurement
NOx	593 PPM	540 PPM
CO	3000 PPM	N/A
O ₂	4.57%	5%

Filtered

GLENNAN MICROSYSTEM INITIATIVE

MICROFABRICATED EMISSION SENSOR ARRAY CONCEPT HIGH TEMPERATURE ELECTRONIC NOSE

Metal-SiC Schottky diodes

Metal-Reactive Insulator SiC Schottky diodes

Brassboard Integrated Electronic Nose System

High Temperature Nose Requires Packaging Beyond Room Temperature Systems

 Sensor Operating Temperature
 400 C with +/- 8 C stability in dynamic environment

Electronics and Sensor Head

- Oxygen (0 to 21%)
- CO (0 to 3000 PPM)
- Hydrocarbons (0 to 2500 PPM C₂H₂)
- NOx (0 300 PPM)

Harsh Environment Demonstration Testing

1.9 liter, four cylinder HCCI at U.C. Berkeley (propane/air)

SUMMARY

 RELIABILITY IS A SIGNIFICANT ISSUE IN HIGH TEMPERATURE SENSORS AND ELECTRONICS

PHYSICAL AND CHEMICAL SENSORS
HIGH TEMPERATURE ELECTRONICS/SENSORS

SENSOR AND ELECTRONICS DEVELOPMENT

TAILOR DEVICE TO APPLICATION/WHOLE SYSTEM APPROACH MULTILAYER LAYER APPROACHES NECESSARY NEW MATERIALS DEVELOPMENT

• CONNECTIONS WITH FROM DEVICE TO OUTSIDE USER A MAJOR COMPONENT OF DEVICE RELIABILITY

LEAD WIRES
CONTACTS
PACKAGING

• DEMANDS ON RELIABLITY OF INDIVIDUAL COMPONENTS WILL INCREASE WITH THE DEVELOPMENT OF INTEGRATED MICROSYSTEMS